INFORMACIÓN EXCLUSIVA PARA LOS PROFESIONALES DE LA SALUD


Periodicidad: mensual
Editor: Alberto Kably Ambe
Abreviatura: Ginecol Obstet Mex
ISSN: 0300-9041
ISSNe: 2594-2034
Indizada en: PubMed, SciELO, Índice Médico Latinoamericano, LILACS, Medline.

El método del factor Bayes para la investigación en Ginecología y Obstetricia
The Bayes factor method for research in gynecology and obstetrics.

Ginecol Obstet Mex. | 8 de Febrero de 2021

Descarga el artículo
Descargar PDF

Ginecol Obstet Mex. 2021; 89 (2): 182-184.

https://doi.org/10.24245/gom.v89i2.5129

Cristian Ramos-Vera

Área de investigación, Facultad de Ciencias de la Salud, Universidad César Vallejo, Lima, Perú.

Corrrespondencia:

Cristian Ramos Vera
cristony_777@hotmail.com

Este artículo debe citarse como:

Ramos-Vera C.  El método del factor Bayes para la investigación en ginecología y obstetricia. Ginecol Obstet Mex. 2021; 89 (2): 182-184.

Estimado Editor:

Un artículo de la presente revista refiere las controversias en la interpretación de la significación estadística (p valores), y recomienda el uso de métodos bayesianos1 a partir de los datos de un estudio reciente que utilizó la prueba estadística de t de Student de muestras independientes para evaluar las diferencias de la media de la glucosa en ayuno (mg/dL) en pacientes embarazadas sin y con diabetes mellitus gestacional.2 El propósito es presentar un ejemplo de reanálisis bayesiano 3,4 a partir del valor comparativo (t = -5.879) y los datos muestrales (25 y 25) respectivamente.2

El empleo del factor de Bayes permite evaluar el contraste de probabilidad de las hipótesis estadísticas a partir del estado de los  valores de p que brindan información adicional más allá de la interpretación dicotómica del rechazo o aceptación de la hipótesis nula, 3,4 mediante un sistema de valores según la escala de clasificación de Jeffreys:5 débil, moderado, fuerte, muy fuerte y extrema. Cuadro 1

El factor Bayes consta de dos interpretaciones: FB10 (a favor de la hipótesis alternativa) y BF01 (a favor de la hipótesis nula) y el intervalo de credibilidad al 95%.6 Los resultados obtenidos del factor Bayes evidenciaron: BF10 = 31000 y BF01 = 3.22e-05 e IC95% [0.592 a 1.624] en pacientes embarazadas. La inferencia bayesiana refiere una evidencia extrema a favor de la hipótesis estadística alterna (diferencia) de la media de la glucosa en ayuno (mg/dL) reportada por Collantes-Gutiérrez y colaboradores. 2

Para leer la información completa, por favor descargue el archivo PDF.

 

 

Comentario del Dr. José Niz Ramos, autor del artículo: Las falacias de la p y significación estadística

Respetado Editor:

En respuesta a la carta “El método del factor Bayes para la investigación en ginecología y obstetricia” de Cristian Ramos-Vera, que menciona mi artículo,1 debo señalar que estoy totalmente de acuerdo con sus comentarios y precisiones, haciéndolo fácil y entendible con el ejemplo utilizado del artículo de Collantes-Gutiérrez.2 

El análisis estadístico en los estudios experimentales u observacionales con los métodos bayesianos contribuye a dar más información y, principalmente, es más procedente que los métodos clásicos de las pruebas de hipótesis.

Los métodos clásicos son, evidentemente, más fáciles de aplicar, y los conoce la mayoría de los investigadores; pero que se pueda agregar en el modelo bayesiano el análisis a priori (puntos de vista antes del estudio) resulta atrayente, dado que es el método en que razonamos cotidianamente a la hora de hacer nuestras inferencias. Si bien los cálculos son más engorrosos, las facilidades que brindan los programas de cómputo en los momentos actuales resuelven este problema.3

El método de Bayes es un método cuantificable que permite ponderar la evidencia asociada a la hipótesis nula y a la hipótesis alterna por medio de los valores de débil a extrema como señala el autor, por lo que evita la dicotomización irreflexiva basada en la significación estadística.

Este tipo de comunicación beneficia el conocimiento y ayuda a que los resultados de los trabajos sean analizados con paradigmas más veraces que favorezcan una mejor calidad de nuestra revista. 

Este modelo de enfoques debe sugerirse a los autores que envían artículos a Ginecología y Obstetricia de México, para mejorar la calidad de los trabajos. 

REFERENCIAS

1. Niz-Ramos J. Las falacias de la p y significación estadística. Ginecol Obstet Mex. 2020;88(8):536-41. doi:10.24245/gom.v88i8.4534

2. Collantes-Gutiérrez AA, Romero-Ogawa T, Morales-López A, Espinosa-de Santillana IA. Concentraciones de vitamina D en mujeres embarazadas y su relación con diabetes gestacional. Ginecol Obstet Mex. 2020;88(12):853-9. doi:10.24245/gom.v88i12.4592

3. Matthews Robert A. J. Moving Towards the Post p < 0.05 Era via the Analysis of Credibility, The American Statistician, 2019;73:sup1, 202-212, DOI: 10.1080/00031305.2018.1543136